Marco Bornstein

My overarching research goal is to make edge and distributed learning algorithms more realistic, efficient, and secure

😭 🛛 Baltimore, MD

Personal Website

RESEARCH & WORK EXPERIENCE

 Graduate Assistant | Huang Research Group
 2020 – PRESENT

 Federated Learning (FL), Asynchrony, Compression, & Mechanism Design

- Constructing memory- and computational-efficient distributed algorithms via asynchronous and compression methods.
- Building mechanisms to incentivize FL participation & performance

 Applied ML Scientist | Alcority
 2022 - PRESENT

 Large-Scale Training of Physics-Informed Neural Networks
 2022 - PRESENT

- Constructing efficient and scalable ML algorithms for physical applications
- Building large-scale distributed training architectures

Doctoral Internship | Pacific Northwest National Lab2022 - 2023Distributed Algorithms for Micro-grid Applications2022 - 2023

- Researched edge-computing algorithms with applications to inverter-based micro-grids with high renewable penetration
- Constructed a model-agnostic distributed algorithm so edge devices can collaboratively train irrespective of cost or memory constraints

PUBLICATIONS

M. Bornstein, N. Nazir, J. Drgona, S. Kundu, & V. Adetola. "Finding MID-DLE Ground: Scalable and Secure Distributed Learning". *Conference on Information and Knowledge Management*, 2024.

M. Bornstein, T. Rabbani, E. Wang, A. Bedi, & F. Huang. "SWIFT: Rapid Decentralized Federated Learning via Wait-Free Model Communication". *International Conference on Learning Representations*, 2023.

M. Bornstein*, T. Rabbani*, & F. Huang. "Large-Scale Distributed Learning via Private On-Device LSH". *Neural Information Processing Systems*, 2023.

M. Bornstein, T. Tullius, & Y. Bayazitoglu. "Optimal nanoparticles for heat absorption and cost." *International Journal of Heat and Mass Transfer*, 2019.

Workshops:

M. Bornstein, A. Bedi, A. Sahu, & F. Huang. "RealFM: A Realistic Mechanism to Incentivize Data Contribution and Device Participation". *NeurIPS Federated Learning Workshop*, 2023.

Preprints:

M. Bornstein, J. Liu, J. Li, & F. Huang. "Escaping From Saddle Points Using Asynchronous Coordinate Gradient Descent", 2022.

Under Submission:

M. Bornstein, A.Bedi, A. Mohamed, & F. Huang. "FACT or Fiction: Can Truthful Mechanisms Eliminate Federated Free Riding?".
T. Rabbani, B. Feng, M. Bornstein, & F. Huang. "Federated Learning of Large Networks on Constrained Clients via Sketching".

M. Bornstein*, T. Rabbani*, M. Ding, & F. Huang. "Training Extreme Recommender Systems using Compressed Virtual Labels".

EDUCATION

2

.019 – PRESENT	Ph.D. Candidate Applied Mathematics <i>University of Maryland</i> GPA: 3.95/4.00
2019 – 2021	Master of Science Applied Mathematics <i>University of Maryland</i> GPA: 3.95/4.00
2015 – 2019	Bachelor of Science Mechanical Engineering Bachelor of Arts Comp. & Applied Mathematics <i>Rice University</i> GPA: 3-77/4-00

AWARDS

2024	Hauptman Fellowship
	University of Maryland

2019-2020 Aziz-Osborn Gold Medal in Teaching Excellence University of Maryland

- 2019 **Best Energy-Related Design** Rice University Design Showcase
- 2017 **NSF Travel Grant Scholarship** 34th QPRC Conference
- 2017 **Best Poster and Presentation** 7th Eubank Conference

PRESENTATIONS

2022 **Oral Presentation of SWIFT** NeurIPS Federated Learning Workshop

TEACHING EXPERIENCE

2019-2020 Calculus I, University of Maryland

PROGRAMMING SKILLS

Python, PyTorch, TensorFlow, MATLAB, Open MPI