Marco Bornstein

2022 - PRESENT

Baltimore, MD Â

marco.i.bornstein@gmail.com

+1 (206) 495-3942 L

Personal Website

RESEARCH & WORK EXPERIENCE

 \sim

Graduate Assistant | Huang Research Group 2020 – PRESENT Mechanism Design, Federated Learning (FL), Asynchrony, & Compression

- · Building mechanisms to regulate AI models, ensure FL agent truthfulness, and incentivize FL participation & performance
- · Constructing memory- and computational-efficient distributed algorithms via asynchronous and compression methods.

Applied ML Scientist | Alcority

Large-Scale Training of Physics-Informed Neural Networks

- · Constructing efficient and scalable ML algorithms for physical applications
- · Building large-scale distributed training architectures

Doctoral Internship | Pacific Northwest National Lab 2022 - 2023Distributed Algorithms for Micro-grid Applications

- · Researched edge-computing algorithms with applications to inverter-based micro-grids with high renewable penetration
- Constructed a model-agnostic distributed algorithm so edge devices can collaboratively train irrespective of cost or memory constraints

TEACHING EXPERIENCE

Calculus I, University of Maryland 2019-2020

PROGRAMMING SKILLS

Python, PyTorch, TensorFlow, MATLAB, Open MPI

PUBLICATIONS

M. Bornstein, A.Bedi, A. Mohamed, & F. Huang. "FACT or Fiction: Can Truthful Mechanisms Eliminate Federated Free Riding?". Neural Information Processing Systems, 2024.

M. Bornstein, N. Nazir, J. Drgona, S. Kundu, & V. Adetola. "Finding MID-DLE Ground: Scalable and Secure Distributed Learning". Conference on Information and Knowledge Management, 2024.

M. Bornstein, T. Rabbani, E. Wang, A. Bedi, & F. Huang. "SWIFT: Rapid Decentralized Federated Learning via Wait-Free Model Communication". International Conference on Learning Representations, 2023.

M. Bornstein*, T. Rabbani*, & F. Huang. "Large-Scale Distributed Learning via Private On-Device LSH". Neural Information Processing Systems, 2023.

M. Bornstein, T. Tullius, & Y. Bayazitoglu. "Optimal nanoparticles for heat absorption and cost." International Journal of Heat and Mass Transfer, 2019.

Preprints:

M. Bornstein, J. Liu, J. Li, & F. Huang. "Escaping From Saddle Points Using Asynchronous Coordinate Gradient Descent", 2022.

EDUCATION

2019 – PRESENT	Ph.D. Candidate Applied Mathematics <i>University of Maryland</i> GPA: 3.95/4.00
2019 – 2021	Master of Science Applied Mathematics <i>University of Maryland</i> GPA: 3.95/4.00
2015 – 2019	Bachelor of Science Mechanical Engineering Bachelor of Arts Comp. & Applied Mathematics <i>Rice University</i> GPA: 3.77/4.00

AWARDS

2

2024	Hauptman Fellowship University of Maryland
019-2020	Aziz-Osborn Gold Medal in Teaching Excellence <i>University of Maryland</i>
2019	Best Energy-Related Design <i>Rice University Design Showcase</i>

- NSF Travel Grant Scholarship 2.017 34th QPRC Conference
- **Best Poster and Presentation** 2017 7th Eubank Conference

Workshops:

M. Bornstein*, T. Rabbani*, M. Ding, & F. Huang. "Shrinking the Size of Extreme Multi-Label Classification". NeurIPS Workshop on Machine Learning and Compression, 2024.

M. Bornstein, A. Bedi, A. Sahu, & F. Huang. "RealFM: A Realistic Mechanism to Incentivize Data Contribution and Device Participation". NeurIPS Federated Learning Workshop, 2023.

Under Submission:

M. Bornstein, Z. Che, S. Julapalli, A.Bedi, A. Mohamed, & F. Huang. "Auction-Based Regulation for Artificial Intelligence".

T. Rabbani, B. Feng, M. Bornstein, & F. Huang. "Federated Learning of Large Networks on Constrained Clients via Sketching".